本发明公开了一种基于增强语义的自动文本摘要方法,步骤如下:对文本预处理,按照词频信息从高到低排列,将词转为id;利用一个单层双向LSTM将输入序列进行编码,提取文本信息特征;利用单层单向LSTM将编码得到的文本语义向量进行解码获得隐层状态;进行语境向量的计算,提取输入序列中与当前输出最有用的信息;在解码后得到一个词表大小的概率分布,采取一定的策略进行摘要词选择,训练阶段将融合生成摘要和源文本的语义相似度进行损失计算,提高摘要和源文本的语义相似度。本发明利用LSTM深度学习模型对文本进行表征,融入上下文的语义联系,并增强了摘要和源文本的语义关系,生成的摘要更能契合文本的主题思想,应用前景广泛。
咨询热线:020-38033421
传真号码:020-38061201
电子邮箱:jm@jiaquanip.cn
Copyright © 嘉权专利商标事务所 All Rights Reserved. 粤ICP备2023151901号