本发明公开了一种面向标签噪声的图节点分类方法,包括步骤:1)构建多个图卷积网络(GCN)模型;2)在图数据上估计联合分布、剪枝噪声数据,得到初次清理的数据并训练图卷积网络模型;3)在图数据上训练图卷积网络模型,与步骤2)的图卷积网络模型一起预测未标记节点,得到伪标签和预测概率矩阵,结合带标记节点的标签和预测概率矩阵,共同估计全数据联合分布、剪枝噪声数据;4)使用步骤3)中得到的二次清理的图数据训练图卷积网络模型,并预测节点类别。本发明在图卷积网络模型的基础上引入噪声联合分布估计和伪标签结合的标签噪声建模方法进行噪声鲁棒性训练,实现了具有更高准确性和噪声鲁棒性的节点分类方法。
咨询热线:020-38033421
传真号码:020-38061201
电子邮箱:jm@jiaquanip.cn
Copyright © 嘉权专利商标事务所 All Rights Reserved. 粤ICP备2023151901号