首页 > 专利商城 > 专利交易
一种基于特征返回的条件DCGAN模型的动态调整方法
交易价格:面谈
所属类型
发明专利
所属行业
G06-计算技术
所属国家
所属地域
PCT项
交易方式
  • 专利详情
  • 专利摘要
  • 主权利要求
  • 优先权项
  • PCT项
CN2017105791192
2017-07-17
发明专利
一种基于特征返回的条件DCGAN模型的动态调整方法
华南理工大学
已授权

本发明公开了一种基于特征返回的条件DCGAN模型的动态调整方法,属于深度学习神经网络领域,该算法步骤如下:构造深度卷积生成式对抗网络DCGAN模型;对DCGAN模型进行训练;在判别器的卷积层中,对每一层卷积之后的图像特征数据记为特征数据记录Xi;将所有Xi进行维度扩展;S5、将维度扩展后的特征数据记录Xi与输入生成器中的噪声结合输入到记录图像生成器中进行训练。本方法能够解决在网络训练初期,生成器生成图像不符合数据集特征的问题,使生成器通过学习判别器中卷积过程的图像特征,以更高的效率学习到数据集中的图像特征,从而能够以更快的速度生成符合数据集特征的图像,能够较大程度地减小网络训练所需要的时间。

联系方式

咨询热线:020-38033421

传真号码:020-38061201

电子邮箱:jm@jiaquanip.cn

关注嘉权专利商标事务所

Copyright © 嘉权专利商标事务所 All Rights Reserved.    粤ICP备2023151901号