本发明公开了一种基于代价敏感分类器集成的广告点击率预测方法,包括步骤:在特征提取上,采用人工定义的规则进行特征提取,对用户行为历史记录进行特征提取和采样;在广告点击率预测中采用改进B?SMOTE+方法进行数据过采样;经过数据预处理后的数据集在交由分类器学习时采用代价敏感算法,将误分“点击广告”这一错误加大惩罚力度;采用了遗传算法进行了优化调参;采用两层Stacking方式对进行集成。本发明解决了目前一些点击率预测算法由于特征维度较少、数据预处理不到位等问题导致的准确率较低等问题,采用该方法能够较好地提升广告点击率预测的准确率。
咨询热线:020-38033421
传真号码:020-38061201
电子邮箱:jm@jiaquanip.cn
Copyright © 嘉权专利商标事务所 All Rights Reserved. 粤ICP备2023151901号