本发明提出了一种复杂车路图像边界优化方法,实现了复杂车路环境下图像目标的分类。首先通过SegNet算法模型进行大量数据的训练仿真得到粗糙的车路目标分类特征,然后利用简单线性迭代聚类算法获得图像的过分割区域,结合SegNet算法得到的神经网络确定每个超像素区域中每个像素的类别,最后通过利用条件随机场精确的边界恢复能力来优化语义分割的结果,实现对车路图像进行边界和小区域目标误分割优化。结果表明,本发明的方法可以提高对象边界的分割精度。
咨询热线:020-38033421
传真号码:020-38061201
电子邮箱:jm@jiaquanip.cn
Copyright © 嘉权专利商标事务所 All Rights Reserved. 粤ICP备2023151901号